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In this paper, in order to improve the traditional evaluation of electric contact, the novel ultrasonic C-scan image evaluation 

system is built by combining the Support Vector Machine (SVM), the Mutative Scale Chaos Optimization (MSCO) and the 

Genetic Algorithm (GA). The SVM is used as a classifier, the MSCO is employed as a model selector to optimize the 

parameters of SVM, and the GA is applied as a feature selector to get rid of redundant and irrelevant features for this system. 

In the experiment, the grayscale histograms are extracted as the feature dataset from the ultrasonic C-scan images. Then 

the novel system can classify the electric contacts into three categories with high efficiency and accuracy by using a certain 

feature samples when the 10-fold cross validation procedure is applied: qualified product, unqualified product and repairable 

product. Some comparisons have been made to show that the model selection and the feature selection are very important 

for improving the average evaluation accuracy rate. 
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1. Introduction 

 

Ultrasonic C-Scan is a nondestructive inspection 

technique for composites in which a short pulse of 

ultrasonic energy is incident on a sample. Measurement of 

the transmitted pulse indicates the sample's attenuation of 

the incident pulse. The attenuation of the pulse is 

influenced by voids, delaminations, state of resin cure, the 

fiber volume fraction, the condition of the fiber/matrix 

interface and any foreign inclusions present. Ultrasonic 

C-scan can produce comprehensive, high quality 

corrosion/erosion images.  

Ultrasonic C-scan imaging technology is developed 

on the basis of the computer technology, information 

technology and image technology. It can provide much 

useful information about the defects. The extraction and 

the analysis of the defect information need the digital 

image processing technology to realize. Ultrasonic C-scan 

imaging technology is one of the most attractive modern 

ultrasonic nondestructive testing technologies, as well as 

one of the key technologies of realizing the defects 

locations and nondestructive evaluations. It has become a 

very active research direction in the field of ultrasonic 

nondestructive testing, which has been applied to the 

inspection of materials in many industry areas[1-6]. [1] 

introduced that ultrasonic techniques are being 

increasingly used for nondestructive testing and quality 

control of bonds between the electrical contacts and the 

support members of the contact assemblies. The delayed 

pulse echo and the through transmission are discussed with 

respect to their limitations and merits for the brazed bond 

quality between the silver- cadmium oxide or silver 

contact and the copper support. [2] proposed a low-cost, 

electro-mechanical ultrasonic scanner for obtaining high 

resolution C-scan images of the friction skin ridge 

structure found on the digits of the hands or feet in order to 

create imagery of sufficient quality for use in automated 

personal identification systems. The C-Scan ultrasonic 

imaging is applied to evaluate grouted post-tensioned 

tendons in [3]. A new intelligent instrument is proposed by 

[4], specialized in inspecting defects in rails. It is based on 

the ultrasonic nondestructive examination theory. 

Petculescu presented a nondestructive method to obtain 

and analyze ultrasound images of bone tissues by C-scan 

in [5]. By applying this method one can obtain 

bi-dimensional ultrasonic images in which the differences 

in the image contrast result from the ultrasound-bone 

tissue interaction. A practical ultrasonic C-scan techniques 

for NDT of laminated composite materials are developed 

and applied in [6], with an aim to trace specific artificial 

defects. 

Ultrasonic C-scan imaging technology is an effective 

method for the electric contact brazing surface quality 

evaluation. Ultrasonic C-scan images can provide the 

quality characteristics of the electric contact brazing 

surface such as defects, locations, sizes and shapes. In 

order to evaluate the ultrasonic C-scan images, the digital 

image processing technology is applied to get brazing rate 

from the ultrasonic C-scan images about electric contact 

brazing surface. The traditional method to evaluate electric 

contact quality is to calculate the electric contact brazing 

rate. In some electrical contact manufactures in China, the 

JTUIS (Jiao Tong University Instrumental System) 

ultrasonic C-scan imaging nondestructive evaluation 

system has been used to evaluate the electric contact 

brazing surface quality, developed by Xi’an Jiaotong 
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University. Brazing rate can be calculated depending on 

size, grey and shape information for this system by the 

ultrasonic C-scan images and used for evaluating the 

electric contact brazing surface quality. Unfortunately, the 

grey and the shape information are difficult to achieve 

without high quality images by the JTUIS, then the 

calculations of brazing rate aren’t reliable. Therefore, to 

achieve more satisfactory results, the professionals usually 

participate in the evaluation process. In the present 

methods, evaluations for ultrasonic C-scan images of 

electric contacts are based on JTUIS and professionals, 

thus, the efficiency is reduced. 

The contribution of this paper is that the novel 

ultrasonic C-scan image evaluation system for electric 

contact converts the evaluation problem into classification 

problem by combining the characteristics of Support 

Vector Machine (SVM), Mutative Scale Chaos 

Optimization (MSCO) and Genetic Algorithm (GA) in 

order to improve the efficiency. Some comparisons are 

made to show that the novel evaluation system is more 

effective, and the model selection and the feature selection 

are important for improving the average evaluation 

accuracy rate. 

 

 

2. Overview of the ultrasonic C-scan image    

   evaluation system 

 

In order to build the novel system with the best 

average evaluation accuracy rate by using fewer features, 

training SVM is the key to find out the best parameters 

and feature subset for SVM by the model selection and the 

feature selection.  

Fig.1 illustrates the SVM training configuration. The 

samples of ultrasonic C-scan images are obtained by the 

JTUIS ultrasonic C-scan imaging nondestructive 

evaluation system. Features, next, are extracted by 

employing grayscale histograms of images from the 

samples library as the image features and normalized, then 

form the feature dataset of ultrasonic C-scan images. The 

model selection is realized by MSCO, and the feature 

selection is performed by GA, respectively. The SVM is 

applied as a classifier. When the SVM is trained, the 

outputs of SVM will guide the MSCO’s model selection to 

find out the best SVM parameters and GA’s feature 

selection to set up a good subset of features. At the end, 

the novel ultrasonic evaluation system will use the best 

parameters and fewer features to achieve the same or 

better classification. After the SVM training, the SVM will 

be tested by evaluating samples gotten from feature 

dataset. 

 

2.1 Support vector machine (SVM) and model  

   selection of SVM 

 SVM 

SVM is a new generation learning system based on 

recent advances in statistical learning theory, which is 

introduced by Vapnik[7]. SVM applies the concept of 

decision planes to define decision boundaries. A decision 

plane is one that separates between a set of objects with 

different class memberships. The basic idea of SVM to 

deal with the classification problem is to map the sample 

space to a high-dimensional feature space. Then find out 

the optimal hyperplane in the feature space, which actually 

corresponds to the original nonlinear hyperplane in the 

sample space. SVM can avoid the problem that should be 

directly dealt with in high dimension space through the 

features of kernel function. 

Support a set D of n training examples  ,i iyX  are 

given with binary outputs 1iy    corresponding to the 

two classes. SVM can find the optimal hyperplane leaving 

the largest possible fraction of points of the same class on 

the same side, while maximizing the distance of either 

class from the hyperplane. This is equivalent to 

performing structural risk minimization to achieve good 

generalization. Assume that there are l examples from two 

classes 

1 1 2 2( , ),( , ), , ( , ), , { 1, 1},N

l l l iy y y R y l N    X X X X                  (1) 

where  (1), (2), ( )i i i ix x x n


X . 1 2, , , lX X X  

are input variable vectors. iy  is the class label of iX . 

According to the principle of structural risk, the 

minimum risk boundary of classification problem can be 

converted to the following optimization problem 
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After applying Lagrange function and a series of 

optimization methods, the optimization problem will be 

transformed to find maximum of the following function[7] 
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(2) 

Corresponding to a quadratic programming problem, 

Equ.(2) has a unique solution under the restriction of the 

range. According to the functional theory, there is an inner 

product function ( , )i jK x x  satisfying the Mercer 

condition, which is  

 

( , ) ( ) ( ),T

i j i jK x x x x   
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( , )i jK x x
 

is the kernel function. 
i  are the solutions 

to the following quadratic programming problem 
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It can be proved that only a few i  are not zero. The 

corresponding samples are support vectors.  

Thus optimization decision function can be obtained 

as follows 

1

( ) ( ( , ) ),
l

i i i

i

f x sign y K x x b


   

where sign  is the symbol function, l  is the number of 

support vectors, b  is the classification threshold. 

Choosing different kernel functions can realize 

different SVM algorithms. There are three main 

kernels[8]. 

(1) Polynomial kernel 

 ( , ) ( ) 1
q

i iK  X X X X  

The SVM is a q-th order polynomial classifier. 

(2) Gaussian kernel (RBF kernel) 

2 2( , ) exp( / )i iK   X X X X  

Gaussian kernel corresponds to a radial basis function 

(RBF) neural network. The SVM is a RBF classifier. 

(3) Sigmoid kernel  

( , ) tanh( ( ) )i iK v C X X X X  

Sigmoid kernel corresponds to a two-layer sigmoid 

neural network.  

Because the hyperparameters of Gaussian kernel are 

fewer than other kernels for SVM, it is easier to find out 

the better hyperparameters by Gaussian kernel than those 

by other kernels. Therefore, the Gaussian kernel will be 

used in this system. In the Equ.(1), the iX  denote the 

features vectors of the ultrasonic C-scan images, which are 

fed into the SVM, and the { 1, 0, 1}iy     denote the 

three categories of electric contacts, which are the output 

of the SVM, when the SVM is used in the novel system. 

1iy    denotes the unqualified electric contact, 

0iy   denotes the repairable electric contact and 

1iy   denotes the qualified electric contact. 

 Model selection of SVM 

For SVM classifier, the appropriate penalty parameter 

and kernel parameter must be chosen, referred to the 

model selection. 

Because the Gaussian kernel is applied in SVM, the 

two parameters C  and   need to be chosen for a 

practical classification problem. Model selection, in fact, is 

an optimization problem. The optimization goal is to 

search optimal parameters C  and   so that SVM can 

accurately predict unknown data (test data). At present, 

several model selection methods have been proposed by 

some researchers. Such as, the grid search method[9], 

online gradient descent method [10], radial interval 

bounded method[11] and two lines searching 

algorithm[12]. Among them, the grid search method is 

more popular. However, the grid search almost searches 

each pair of  ,C  .  ,C   that has the highest cross 

validation accuracy is the optimal parameter pair of SVM 

model. The grid search is similar to exhaustive search. So 

in some cases, the grid search is time-consuming and only 

gets the suboptimal results. 

In order to avoid the shortcomings of the grid search 

method mentioned above, this paper applied the mutative 

scale chaos optimization to realize the model selection, 

which is practical, rapid and with highly accurate. 

 

2.2 Mutative Scale Chaos Optimization (MSCO) 

 

The chaos is a kind of universal phenomena in 

nonlinear systems. The chaos has three important dynamic 

properties: ergodicity, intrinsic quasi-stochastic property 

and the sensitivity depending on initial conditions. A 

chaotic variable can go non-repeatedly through each state 

in searching domain. These properties can be used to solve 

optimization problems. The method is called Chaos 

Optimization Algorithm (COA). COA can escape from 

local minima more easily than other stochastic 

optimization algorithms that escape from local minima by 

accepting some wrong solutions, such as simulated 

annealing and genetic algorithm[13]. 

The essences of the chaotic optimization algorithms 

are: (1) Maps derived by discretizing gradient models with 

Euler's method generate chaos if the dynamical systems 

are unstabilized by setting their sampling time larger. (2) 

Chaotic trajectories of the maps are useful to probe in wide 

ranges of the searching domain without being trapping into 

local optima. (3) The chaotic annealing method is 

available by gradually decreasing the sampling time of 

them. Until now, the most COAs have been proposed 

based on the second essence[14]. Bing Li applied the 

carrier wave method to add the chaotic variables to 

optimization variables and used the ergodicity property of 

chaotic variables to search[13]. Tong Zhang proposed the 

mutative scale chaos optimization (MSCO) method[15]. 

The searching space of optimizing variables was reduced 

continually and the searching precision was enhanced. 

Zicai Wang and MingJun Ji proposed the chaos simulated 

annealing (CSA) with replacing the Gaussian distribution 

by chaotic sequences in simulated annealing[16, 17]. Choi 

added the chaotic variables to the steepest descent 

searching algorithm and used the parallel search method to 

solve the optimization problem[18]. Zhou provided a 

general method for constructing a chaotic system based on 

the corresponding gradient descent system[19]. 

In this paper, the MSCO is applied for the 
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optimization problem which has the global minimum 

 

 
1 2min , , ,

. . , , 1, 2, , .

n

i i i

f x x x

s t x a b i n 
           (3) 

 

The MSCO is described in detail as follows[15]: 

Chaos variables are generated by 

 1 1k k kx x x     in the MSCO algorithm, where 

4  . The initial value of kx  is chosen between 0 and 

1, but fixed points (0.25, 0.5 and 0.75) can’t be chosen. 

Step1: Set 0k  , 0r  ,  0k

i ix x , 

 * 0i ix x , 
r

i ia a , 
r

i ib b  ( 1, 2, ,i n ). k  

is the iterative sign, r  is the searching sign,  0ix  is 

the initial values, which are between 0 and 1, 
*

ix  is the 

optimal chaotic variables at this step. At the same time, the 

optimal result 
*f  is set as a very large number. 

Step2: Map chaotic variables , 1, 2, ,k

ix i n  

into the variance range of the optimization variables by the 

following equation 

 .k k k r r

i i i i imx a x b a     

  

Step3: If   *k

if mx f , then  * k

if f mx , 
* k

i ix x . 

Step4: 1k k  ,  4 1k k k

i i ix x x    

Step5: Repeat Step 2 to Step 4, until 
*f  becomes 

stable after certain iterations. 

Step6: Reduce the searching space 
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where  0, 0.5 ,  * * * r r

i i i i imx a x b a     is the 

better population. If 
1r r
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1r r
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Step7: Produce the new populations by 

  *1 ,k k

i i iy x x     where   is very small. 

Step8: Repeat Step 2 to Step 4 by using 
k

iy  as 

chaotic variables. 

Step9: Repeat Step 7 to Step 8, until 
*f  becomes 

stable after certain iterations k . 

Step10: 1r r  . Reduce   and let 

, 1    . Then repeat Step 7 to Step 9. 

Step11: If the stop criteria aren’t satisfied, then repeat 

Step 10, or stop searching. 

Step12: So far, 
*

imx  is the optimal variable and 
*f  

is the optimal result. 

Although chaotic variables are ergodic, the chaotic 

variables will take longer time to find the optimal results 

when the space is very large. Thus, that gradually reducing 

the searching space of optimization variables is taken into 

consideration. At Step 6 and Step 7, the searching space of 

the mutative scale chaos optimization will be decreased. 

 

Because the model selection is to search the two best 

parameters C  and   for SVM, the Equ.(3) converts to 

 

 

   

min ,

. . 0, 500 , 0,1 .

f C

s t C


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The stop criteria for whole the system will be 

introduced in section 3.3. 

 

2.3 Genetic algorithm (GA) for feature selection 

 

In most practical cases, relevant features are not 

known as a priori. Often, a large number of features are 

extracted from ultrasonic signals to represent the flaws. 

Without adapting some kinds of feature-selection 

strategies, many of these features could be either 

redundant or even irrelevant to the flaw-classification task. 

Watanabe showed that it is possible to make two arbitrary 

patterns similar by encoding them with a sufficiently large 

number of redundant features[20]. Therefore, it is 

necessary to find out which features are used in a 

classification. This task is referred to feature selection. 

Feature selection is actually an optimization problem. This 

paper will apply binary encoding GA to solve the problem, 

which is described in detail as follows, 

Step1: Initialize the parameters of the GA. Randomly 

generate initial population  1pop , which is composed 

of N chromosomes by binary encoding method. 

Step2: Calculate the fitness function   if pop t  

for each chromosome  ipop t  in population ( )pop t . 

t  means the iteration time. 

Step3: If stop criteria are satisfied, GA stops. Or 

calculate the probability 

   
1

( ) / ( ) 1, 2, , .
N

i i j

j

P f pop t f pop t i N


   

According to the probabilities iP , select two parent 

chromosomes from ( )pop t  to form new population 

( 1)Newpop t  . 

Step4: With a crossover probabilities cP , cross over 

the ( 1)Newpop t   to form ( 1)Crosspop t  .  

Step5: With a small mutation probabilities mP , 

mutate the ( 1)Crosspop t   at each locus to form 

( 1)Mutpop t  . Let ( ) ( 1)pop t Mutpop t   and 

return to Step2.  

 

 

3. Experiments for ultrasonic C-scan image  

   evaluation system for electric contacts 

 

The flowchart of experiment for ultrasonic C-scan 

image evaluation system is shown in Fig.2. 
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Sample library 

of ultrasonic 

C-scan images

Feature extraction 

by  grayscale 

histogram

Establish feature 

dataset by 

normlization

Feature subset of 

ultrasonic C-scan 

images

Train SVM 

classification 

model

Features selection
SVM model 

selection

 

Fig.1: The SVM training of ultrasonic C-scan image evaluation system 

 

Set up sample library of 

ultrasonic C-scan images

Feature extraction

Training SVM

Finish 10  times

SVM testing

Establish feature dataset 

SVM model selection 

based on MSCO

Feature selection based 

on GA

Yes

Setup SVM with optimal 

parameters after model 

and feature selection 

optimizaiton

Select randomly 80% 

feature dataset as 

training dataset

Select randomly 20% 

feature dataset as 

testning dataset

No

Get the selected features 

and evaluation accuracy
 

Fig.2: Flowchart for experiments 

 

 

3.1 Sample library of ultrasonic C-scan images  

 

The JTUIS ultrasonic C-scan imaging nondestructive 

evaluation system is shown in  

Fig.3 developed by Xi’an Jiaotong University. In the 

novel ultrasonic C-scan image evaluation system, the 

JTUIS is used to collect the ultrasonic images. 

 

 

The ultrasonic water-immersion focusing method has 

been used in JTUIS, which can intuitively reconstruct the 

position, shape and size of defects in the detected objects. 

Therefore, the ultrasonic water-immersion focusing 

method is suitable to evaluate the electric contact brazing 

surface quality. The water is couplant in the ultrasonic 

water-immersion focusing method. Ultrasonic 

Defectoscope (UD) generates ultrasonic waves and 

receives theirs echoes. The processor controls the UD and 

realizes the data acquisition and data store. The ultrasonic 

wave beams and the electric contact brazing surfaces keep 

vertical, and the progressive scanning is made for 

measured samples. Analog signals of ultrasonic echoes are 

transformed into digital signals and save them into the 

computer through the A/D card. Finally, the color 

ultrasonic C-Scan images are achieved. 

To build ultrasonic C-scan image sample library, it is 

important that there are a huge amount of diversely 

representative samples. If the sample is too small or the 

samples haven’t representativeness, the trained classifier 

has poor generation performance. In order to obtain 

enough representative samples, thousands of electric 

contacts are evaluated by the JTUIS and professionals in 

one electric contacts manufacture of Shanghai, and 

thousands of ultrasonic C-scan images are produced. With 

the help of experienced professionals in the factory, these 

images are divided into three categories of qualified 

electric contacts, unqualified electric contacts and 

repairable electric contacts. Fig.4 shows three types of 

ultrasonic C-scan grayscale images of the electric contact 

brazing surface. According to the grayscale images, if 

there is the grey in an image, the electric contact brazing 

surface is unqualified. If the image has no grey, but has 

little white, the electric contact brazing surface is qualified. 

If the image has no grey, but has a lot of white, the electric 

contact brazing surface is repairable. 
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扫查工作台 样品盒 PC机系统软件水箱 工控机 探伤仪探头

 

 

Fig.3: The JTUIS ultrasonic C-scan imaging nondestructive evaluation system 

 

 

300 ultrasonic C-scan images are eventually selected 

(each category is 100) to establish the ultrasonic C-scan 

image samples library for electric contact brazing surface. 

Since the sizes of these 300 images are little different, they 

will be normalized to the same size by geometrical 

transformation before the features are extracted.  

 

3.2 Feature extraction and feature dataset of  

   ultrasonic C-scan images 

 

In the color ultrasonic C-scan images, color 

information of the images is the main feature. Because the 

grayscale histogram is good at reflecting the color 

characteristics of the images, the novel evaluation system 

extracts the grayscale histograms of color ultrasonic 

C-scan images as the features. In order to achieve the 

grayscale histogram, the color ultrasonic C-scan images 

will be transformed to grayscale images. One grayscale 

image can be represented by 256 bins, after getting the 

grayscale histogram. One bin represents a feature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, one ultrasonic C-scan image gets 256 

features, because grayscale histogram has 256 grayscale 

intensities. For instance, Fig.5 shows the grayscale 

histograms of all the ultrasonic C-scan images in the Fig.4. 

In Fig.5, three categories of ultrasonic C-scan images of 

the electric contact brazing surface have obviously 

different grey levels. The stronger the intensity of the 

darkest color and the weaker other colors are, the better 

the qualification is such as the case shown in Fig. 5 (b). 

Fig. 5 (a) shows an unqualified electric contactor 

greycolor figure eventhough the figure has a high intensity 

of the darkest color. However, the intensities of all other 

colors are also reaching a certain intensity level. Fig.5 (c) 

belongs to the repairable category since only a part of 

other colors reach a certain intensity level. Therefore, 

these three categories are easily classified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Water tank Sample box UD Worktable Computer Processor

日 r 

Probe 
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(a) Unqualified electric contact brazing surface 

 

(b) Qualified electric contact brazing surface 

 

(c) Repairable electric contact brazing surface 

Fig.4: Three categories of ultrasonic C-scan grayscale images of the electric contact brazing surface 

Grey Black 
White 
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(a) Grayscale histogram of unqualified electric contact brazing 

surface 

 
(b) Grayscale histogram of qualified electric contact brazing 

surface 

 

(c) Grayscale histogram of repairable electric contact brazing 

surface 

Fig.5: The grayscale histograms of three categories of 

ultrasonic C-scan images of the electric contact brazing 

surface 

 

The feature dataset is established after each grayscale 

histogram is extracted from the ultrasonic C-scan image 

samples library. The feature dataset can be directly used in 

ultrasonic C-scan image evaluation system for electric 

contacts.  

 

3.3 SVM model selection and feature selection 

 

In this paper, the MSCO is applied to realize the 

model selection of SVM. The searching spaces of C  and 

  are  0, 500  and  0,1 , respectively. Other 

parameters for MSCO are set as 

0.5, 3 / 4, 100k    .  

The GA is the feature selector. Because 256 features 

are gotten from the ultrasonic C-scan images, a simple 

binary encoding scheme is used for GA. Namely, the 

256-bits binary is used as a chromosome to represent a 

subset of features. Each bit is a gene. Every gene of a 

chromosome represents a feature extracted from the 

ultrasonic C-scan image. Different chromosomes represent 

different subsets of features. If the i-th gene is 1, the i-th 

feature is selected; otherwise the feature is discarded. One 

population has N chromosomes. The N is set as 100 for the 

initial population. The initial population has 100 

chromosomes. Every gene in the initial population is 

produced randomly. The parameters are set for the GA as 

100, 0.8, 0.05c mN P P   . The goal of the 

feature selection is to use fewer features to make the SVM 

get the same or better performance. Therefore, the fitness 

function should have two terms: the classification 

accuracy and the number of selected features. Each fitness 

function contains a certain number of features. If two 

feature subsets achieve the same performance, while 

containing different number of features, the subset with 

fewer features is preferred. Accuracy is more concerned 

than the feature subset size for the feature selection. So 

one fitness function is used by combining the two terms as 

follows 

410 0.5 ,f Accuracy Zeros            (4) 

where Accuracy corresponds to the classification accuracy 

on a testing dataset for a particular subset of features, and 

Zeros corresponds to the number of features not selected 

(i.e., zeros in the chromosome). On the basis of the 

weights, the Accuracy term dominates the value of the 

fitness function. This result implies that individuals with 

higher accuracy will outweigh individuals with lower 

accuracy, no matter how many features they contain. 

According to Equ. (4), the value of the fitness function of 

each population is calculated in GA. Finally, the maximal 

fitness and the corresponding feature combination are 

treated as the current optimal solution and feature 

combination. 

The stop criteria for the MSCO and the GA are the 

iteration number reaches the maximum number of 

iterations or the evaluation accuracy rate does not improve 

after 100 consecutive iterations. Therefore, the maximum 
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number of iterations is 100. 

 

4. Experimental results and analysis 

 

The novel ultrasonic C-scan image evaluation system 

will take some time to train SVM and GA. After the 

training is finished, the system is set up and used to 

evaluate the electric contacts. The running time will be 

short and the real-time performance will be satisfied. 

A number of experiments and comparisons have been 

performed by using the feature dataset shown in Table.1 to 

demonstrate the importance of the model selection and the 

feature selection. In each experiment, 10-fold cross 

validation procedure is applied. Then the final evaluation 

accuracy is determined by the average accuracy of 

ten-time experiments. The paper will show the experiment 

of the function with model selection when the evaluation 

system only has the model selector. 

 

Table.1: Properties and distributions of the feature dataset 

Category 
The sample 

number 

The feature number for 

each sample 

Training 

dataset 

Testing 

dataset 

Qualified products 100 256 80 20 

Unqualified products 100 256 80 20 

Repairable products 100 256 80 20 

 

The paper will show the function of model selection 

when the evaluation system with only model selector. So 

the ultrasonic C-scan image evaluation system with only 

model selector is first set up to evaluate the electric 

contacts. The grid searching and MSCO are applied as 

model selectors in this system. Because the system has no 

specific feature selection, the full features have been used. 

The system with the MSCO model selector achieves 

92.5% average evaluation accuracy rate, while the system 

with the grid searching model selector just reaches 87.5% 

accuracy rate. When the present method is used to evaluate 

the electric contacts, 87% average evaluation accuracy rate 

is obtained. Because the SVM has not been used, the C  

and   do not exist. Therefore, the evaluation system 

with only model selection is better than the present 

methods, and the MSCO model selector outperforms the 

grid searching model selector. The system with MSCO 

model selector has a great improvement in terms of the 

average evaluation accuracy rate. 

In addition, the feature selector has been added into 

the evaluation system only with the model selector in 

order to eliminate redundant and irrelevant features. The 

evaluation system with the model and feature selection 

improves the average evaluation accuracy rate from 92.5% 

to 96.7% and reduces the feature number from 256 to 130. 

It is shown that the performance of the SVM classifier can 

be improved to a certain level. However, the GA can get 

rid of 126 features and reach a higher average evaluation 

accuracy rate. Because of elimination of redundant and 

irrelevant features, the training time and testing time will 

be reduced, and the generalization of the evaluation 

system is improved. The experimental results and 

comparisons are shown in Table.2. 

 

 

Table.2: The experimental results and comparisons 

 

Ultrasonic C-scan 

Evaluation system 

The parameters of SVM 
Number of selected 

features  

Average 

evaluation 

accuracy rate 
C    

Present evaluation 

system 
Non Non 256 87% 

Model selection of grid 

search  
32 

37.81 10  256 87.5% 

Model selection of 

MSCO 
291.23 

96.29 10  256 92.5% 

Model selection of 

MSCO and feature 

selection of GA 

23.75 
84.68 10  130 96.7% 

 

 

From experiments, the novel system has 

demonstrated the effectiveness for evaluating the quality 

of electric contacts. The model selection can find the better 

parameters and make the classifier in the better condition, 

which can improve the classification accuracy of the 

model selector. The feature selection can also reduce the 

number of relevant features and improve the system 

running speed and evaluation accuracy rate. Therefore, the 
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model selection and the feature selection are very 

important for ultrasonic C-scan image evaluation system. 

 

 

5. Conclusions 

 

This paper employs SVM, MSCO and GA to build up 

a novel ultrasonic C-scan image evaluation system with 

model and feature selection for electric contacts. The 

system uses the MSCO and the GA as the model selector 

and the feature selector, while the SVM is used as a 

classifier. At the beginning of the experiments, the model 

selection is added into the ultrasonic C-scan image 

evaluation system to show that the model selection can 

improve the average evaluation accuracy rate. At the 

meantime, it is shown that the MSCO model selector is 

better than the grid searching model selector, when they 

are applied in the novel system, respectively. Furthermore, 

the model selector and the feature selector are both added 

into the ultrasonic C-scan image evaluation system to 

show that the model selector will further improve the 

average evaluation accuracy rate. At the end, the analysis 

results show that the ultrasonic C-scan image evaluation 

system with the model and feature selection provides the 

better performance for improving average evaluation 

accuracy rate. 
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